

Aerosol therapy of mAbs administration by aerosol

Nathalie Heuzé-Vourc'h

Financial supports:

Aerosol therapy

Aerosol therapy for drugs with systemic action

Airways as a portal for systemic effects

small molecules: fentanyl, apomorphine hydrochloride biologics: insulin (*Afrezza®, MannKind Corporation*)

Aerosol therapy of drugs with local action Respiratory diseases

small molecules: b2-adrenoreceptor agonists, muscarinic antagonists and corticosteroids

biologics: Dornase alfa (Pulmozyme®, Roche)

Aerosol therapy of Antibody-based therapeutics in respiratory diseases

Approved or in Phase III clinical studies

Sponsoring company	INN or code name	Molecular format	Target(s)	Current Phase	Phase III indications
Genentech/Roche - Novartis	Omalizumab	Humanized IgG1	lgE	Approved	Asthma
MedImmune	Palivizumab	Humanized IgG1	RSV	Approved	Prevention of RSV infection
Genentech/Roche	Bevacizumab	Humanized IgG1	VEGF	Approved	NSCLC
GlaxoSmithKline	Mepolizumab	Humanized IgG1	IL-5	Phase III	Asthma; hypereosinophilic syndrome; chronic obstructive pulmonary disease with eosinophilic bronchitis
Teva	Reslizumab	Humanized IgG4	L-5	Phase III	Eosinophilic asthma
AstraZeneca	Benralizumab	Humanized IgG1	IL-5R	Phase III	Asthma
Hoffmann-La Roche	Lebrikizumab	Humanized IgG4	L-13	Phase III	Severe asthma
Peregrine	Bavituximab	Chimeric IgG1	Phosphatidylserine	Phase III	NSCLC
Genentech/Roche	MPDL3280A	Human IgG1; Fc engineered	Programmed death-ligand 1	Phase III	NSCLC
					Respaud

Inhalation ? ALX-0171 (Ablynx, anti-RSV nanobody™)

ALX-0171

Rationale to deliver antibody-based therapeutics through the airways

Espié P et al. 2009

is mAb delivery through the airways feasible and relevant for respiratory disease treatment ?

Therapeutic efficacy of mAbs delivered through the airways

A549 Luc – human NSCLC

cetuximab anti-EGFR (human) (Merck)

Strength

- \checkmark one lesion, alveolar diffusion
- ✓ bioluminescence imaging

Weakness

- ✓ immunodeficient animal
- \checkmark do not cross-react with murine EGFR

Kras LA1 model

a KN

Murine IgG2a anti-VEGF mice/human (G6-31, Genentech)

Strength

- ✓ lepidic NSCLC (natural history)
- \checkmark normal immune system

Weakness ✓ mutliple foci

Cetuximab, anti-EGFR in A549-Luc nude mice

A 9 days 16 days 23 days 30 days С 150. Mean relative tumor volume (%) 100 saline solution 50 1200 State 190 - 3.4544 Plan = 1.1346 0 Saline solution Cetuximab cetuximab D Luminescence (x 10⁶ p/s/cm²/sr) D 1.0-8 ** CC3 positive cells/mm² 0.8 6 0.6 4 0.4 2 0.2 Saline solution Cetuximab 0.0 0 Saline solution Cetuximab 20 10 30 40

Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. Guilleminault L et al. J Control Release. 2014

Days

anti-VEGF in Kras LA1 mice

anti-VEGF in Kras LA1 mice

VEGF IHC in Kras LA1 model during tumorigenesis

Anti-VEGF in Kras LA1 model anti-VEGF limited tumor angiogenesis

Anti-VEGF in Kras LA1 model anti-VEGF limited tumor growth

genentech, Inc.

Proliferative index:

Biodistribution of mAbs delivered through the airways

A549 Luc – human NSCLC

cetuximab anti-EGFR (human) (Merck)

NIRF imaging

✓ cetuximab conjugated to a fluorophore

IHC for cellular localization

✓ anti-human IgG

Biodistribution of mAbs delivered through the airways

Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. Guilleminault L et al. J Control Release. 2014

Biodistribution of mAbs delivered through the airways

i.v. route

Lung tumor

Bronchial epithelium + tumor

Alveolar epithelium

Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. Guilleminault L et al. J Control Release. 2014

mAbs (only full-length)

- ✓ anti-VEGF (G6-31, Genentech)
- ✓ Anti-EGFR (cetuximab, Merck)
- ✓ Anti-CD20

Animals

✓ WT animalsHealthy/tumor model

mAbs (only full-length)✓ Anti-EGFR (cetuximab, Merck)
✓ Anti-ricin (43RCA, French Army)

Devices

- ✓ Microsprayer™ (PennCentury)
- ✓ Mesh nebulizer (Aerogen)

Serum bioavailibility (F)

G6-31 (Kras LA1 mice) 5.1% cetuximab (normal mice) 3.9% rituximab (normal mice) 6.2 %

cetuximab (NHP) 0.3% Anti-ricin (NHP) <1%

Mean residence time (MRT)

cetuximab (normal mice) 12.4 days rituximab (normal mice) 14.2 days

cetuximab (NHP) 10.9 days

Role of FcRn in the passage from the airways into the bloodstream

Table 2

Estimated non-compartmental pharmacokinetic parameters for cetuximab in WT and FcRn KO mice. AUC: area under the concentration–time curve; AUMC: area under the first-moment concentration–time curve; MRT: mean residence time; $t_{1/2}$: half-life for elimination; MAT: mean absorption time; F: bioavailable fraction.

	CETUXIMAB		
	FcRn WT	FcRn KO	
I.v. route	n = 8	n = 7	
$AUC_{0 \rightarrow \infty}$ (mg·L ⁻¹ ·day)	942.9	39.0	
$AUMC_{0 \rightarrow \infty} (mg \cdot L^{-1} \cdot day^2)$	9851.4	19.4	
MRT (day)	10.4	0.5	
t_{ν_2} (day)	7.2	0.3	idem with rituximab
Pulmonary route	n = 9	n = 9	
$AUC_{0 \rightarrow \infty}$ (mg·L ⁻¹ ·day)	37.0	3.1	
$AUMC_{0 \rightarrow \infty} (mg \cdot L^{-1} \cdot day^2)$	456.8	3.8	
MRT (day)	12.4	1.2	
t_{ν_2} (day)	8.6	0.9	
F	3.9%	7.9%	
MAT (day)	1.9	0.7	

Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. Guilleminault L et al. J Control Release. 2014

Conclusions

✓ mAb delivery through the airways is "therapeutically" relevant

- Reach their target antigen and pharmacologically effective
- Limited passage into the bloodstream

in pathophysiological conditions ?
not only dependent on FcRn – lymph vessels ?

- Safety/immunogenicty

Issues related to Aerosol therapy

Issues related to Aerosol therapy

- Complexed macromolecules (150 KDa)
- > Prone to chemical/physical degradation (in particular at the air-liquid interface)

Issues related to Aerosol therapy

Patrice Diot Laurent Guilleminault Virginie Hervé Etienne Lemarié Agnès Maillet Denis Marchand Christelle Parent Jeoffrey Pardessus Flora Paul Renaud Respaud Laurent Vecellio....

a state of a lister

Aerogen[®]